
Fudge Documentation
Release 1.1.0

Kumar McMillan

June 09, 2015

Contents

1 Download / Install 3

2 Installing for Python 3 5

3 Source 7

4 Contents 9
4.1 Using Fudge . 9
4.2 Fudge For JavaScript . 27
4.3 Why Another Mock Framework? . 28
4.4 Migrating from Fudge 0.9 to 1.0 . 29

5 API Reference 31
5.1 fudge . 31
5.2 fudge.inspector . 39
5.3 fudge.patcher . 43

6 Contributing 47

7 Credits 49

8 Changelog 51

Python Module Index 55

i

ii

Fudge Documentation, Release 1.1.0

Fudge is a Python module for using fake objects (mocks and stubs) to test real ones.

In readable Python code, you declare what methods are available on your fake and how they should be called. Then
you inject that into your application and start testing. This declarative approach means you don’t have to record and
playback actions and you don’t have to inspect your fakes after running code. If the fake object was used incorrectly
then you’ll see an informative exception message with a traceback that points to the culprit.

Fudge was inspired by Mocha which is a simpler version of jMock. But unlike Mocha, Fudge does not automatically
hijack real objects; you explicitly patch them in your test. And unlike jMock, Fudge is only as strict about expectations
as you want it to be. If the type of arguments sent to the fake method aren’t important then you don’t have to declare
an expectation for them.

Contents 1

http://mocha.rubyforge.org/
http://www.jmock.org/

Fudge Documentation, Release 1.1.0

2 Contents

CHAPTER 1

Download / Install

Just type:

$ pip install fudge

You can get the pip command here. Fudge requires Python 2.5 or higher.

3

http://pip.openplans.org/

Fudge Documentation, Release 1.1.0

4 Chapter 1. Download / Install

CHAPTER 2

Installing for Python 3

As of version 0.9.5, Fudge supports Python 3. Just install distribute and type:

$ python3.x setup.py install

This step will convert the Fudge source code using the 2to3 tool.

5

http://packages.python.org/distribute/

Fudge Documentation, Release 1.1.0

6 Chapter 2. Installing for Python 3

CHAPTER 3

Source

The Fudge source can be downloaded as a tar.gz file from http://pypi.python.org/pypi/fudge

Using Git you can clone the source from https://github.com/fudge-py/fudge/

Fudge is free and open for usage under the MIT license.

7

http://pypi.python.org/pypi/fudge
https://git-scm.com/
https://github.com/fudge-py/fudge/
http://en.wikipedia.org/wiki/MIT_License

Fudge Documentation, Release 1.1.0

8 Chapter 3. Source

CHAPTER 4

Contents

4.1 Using Fudge

4.1.1 Fudging A Web Service

When testing code that uses a web service you probably want a fast set of tests that don’t depend on an actual web
service on the Internet. This is a good scenario in which to use mock objects. Say you have a Twitter bot that looks
something like this:

>>> import oauthtwitter
>>> def post_msg_to_twitter(msg):
... api = oauthtwitter.OAuthApi(
... '<consumer_key>', '<consumer_secret>',
... '<oauth_token>', '<oauth_token_secret>'
...)
... api.UpdateStatus(msg)
... print "Sent: %s" % msg
>>>

Since the oauthtwitter module is maintained independently, your code should work as long as it calls the right methods.

4.1.2 A Simple Test Case

You can use Fudge to replace the OAuthApi class with a fake and declare an expectation of how it should be used:

>>> import fudge
>>> @fudge.patch('oauthtwitter.OAuthApi')
... def test(FakeOAuthApi):
... (FakeOAuthApi.expects_call()
... .with_args('<consumer_key>', '<consumer_secret>',
... '<oauth_token>', '<oauth_token_secret>')
... .returns_fake()
... .expects('UpdateStatus').with_arg_count(1))
...
... post_msg_to_twitter("hey there fellow testing freaks!")
>>>

Let’s break this down:

1. The patch decorator will temporarily patch in a fake object for the duration of the test and expose it as an
argument to the test. This allows you to add expectations or stubs.

9

http://code.google.com/p/oauth-python-twitter/

Fudge Documentation, Release 1.1.0

2. The fake object you see here expects a call (class instantiation) with four arguments having spe-
cific string values. The returned value is an object instance (a new fake) that expects you to call
fake_oauth.UpdateStatus() with one argument.

3. Finally, post_msg_to_twitter() is called.

Let’s run the test!

>>> test()
Sent: hey there fellow testing freaks!

Sweet, it passed.

Fudge lets you declare expectations as loose or as tight as you want. If you don’t care about the exact ar-
guments, you can leave off the call to fudge.Fake.with_args(). If you don’t care if a method is ac-
tually called you can use fudge.Fake.provides() instead of fudge.Fake.expects(). Likewise,
fudge.Fake.with_arg_count() can be used when you don’t want to worry about the actual argument val-
ues. There are argument inspectors for checking values in other ways.

4.1.3 Fake objects without patches (dependency injection)

If you don’t need to patch anything, you can use the fudge.test() decorator instead. This will ensure an exception
is raised in case any expectations aren’t met. Here’s an example:

>>> def send_msg(api):
... if False: # a mistake
... api.UpdateStatus('hello')
...
>>> @fudge.test
... def test_msg():
... FakeOAuthApi = (fudge.Fake('OAuthApi')
... .is_callable()
... .expects('UpdateStatus'))
... api = FakeOAuthApi()
... send_msg(api)
...
>>> test_msg()
Traceback (most recent call last):
...
AssertionError: fake:OAuthApi.UpdateStatus() was not called

4.1.4 Stubs Without Expectations

If you want a fake object where the methods can be called but are not expected to be called, the code is just the same
but instead of Fake.expects() you use Fake.provides(). Here is an example of always returning True for
the method is_logged_in():

>>> def show_secret_word():
... import auth
... user = auth.current_user()
... if user.is_logged_in():
... print "Bird is the word"
... else:
... print "Access denied"
...
>>> @fudge.patch('auth.current_user')
... def test_secret_word(current_user):

10 Chapter 4. Contents

Fudge Documentation, Release 1.1.0

... user = current_user.expects_call().returns_fake()

... user = user.provides('is_logged_in').returns(True)

... show_secret_word()

...
>>> test_secret_word()
Bird is the word

Note that if user.is_logged_in() is not called then no error will be raised because it’s provided, not expected:

4.1.5 Replacing A Method

Sometimes returning a static value isn’t good enough, you actually need to run some code. You can do this using
Fake.calls() like this:

>>> auth = fudge.Fake()
>>> def check_user(username):
... if username=='bert':
... print "Bird is the word"
... else:
... print "Access denied"
...
>>> auth = auth.provides('show_secret_word_for_user').calls(check_user)
>>> # Now, the check_user function gets called instead:
>>> auth.show_secret_word_for_user("bert")
Bird is the word
>>> auth.show_secret_word_for_user("ernie")
Access denied

4.1.6 Cascading Objects

Some objects you might want to work with will spawn a long chain of objects. Here is an example of fudging a cascad-
ing SQLAlchemy query. Notice that Fake.returns_fake() is used to specify that session.query(User)
should return a new object. Notice also that because query() should be iterable, it is set to return a list of fake User
objects.

>>> import fudge
>>> session = fudge.Fake('session')
>>> query = (session.provides('query')
... .returns_fake()
... .provides('order_by')
... .returns(
... [fudge.Fake('User').has_attr(name='Al', lastname='Capone')]
...)
...)
>>> from models import User
>>> for instance in session.query(User).order_by(User.id):
... print instance.name, instance.lastname
...
Al Capone

4.1.7 Multiple Return Values

Let’s say you want to test code that needs to call a function multiple times and get back multiple values. Up until
now, you’ve just seen the Fake.returns() method which will return a value infinitely. To change that, call

4.1. Using Fudge 11

http://www.sqlalchemy.org/docs/05/ormtutorial.html#querying

Fudge Documentation, Release 1.1.0

Fake.next_call() to advance the call sequence. Here is an example using a shopping cart scenario:

>>> cart = (fudge.Fake('cart')
... .provides('add')
... .with_args('book')
... .returns({'contents': ['book']})
... .next_call()
... .with_args('dvd')
... .returns({'contents': ['book', 'dvd']}))
>>> cart.add('book')
{'contents': ['book']}
>>> cart.add('dvd')
{'contents': ['book', 'dvd']}
>>> cart.add('monkey')
Traceback (most recent call last):
...
AssertionError: This attribute of fake:cart can only be called 2 time(s).

4.1.8 Expecting A Specific Call Order

You may need to test an object that expects its methods to be called in a specific order. Just preface any calls to
fudge.Fake.expects() with fudge.Fake.remember_order() like this:

>>> import fudge
>>> session = (fudge.Fake("session").remember_order()
... .expects("get_count").returns(0)
... .expects("set_count").with_args(5)
... .expects("get_count").returns(5))
...
>>> session.get_count()
0
>>> session.set_count(5)
>>> session.get_count()
5
>>> fudge.verify()

A descriptive error is printed if you call things out of order:

>>> session.set_count(5)
Traceback (most recent call last):
...
AssertionError: Call #1 was fake:session.set_count(5); Expected: #1 fake:session.get_count()[0], #2 fake:session.set_count(5), #3 fake:session.get_count()[1], end

4.1.9 Allowing any call or attribute (a complete stub)

If you need an object that lazily provides any call or any attribute then you can declare
fudge.Fake.is_a_stub(). Any requested method or attribute will always return a new fudge.Fake
instance making it easier to work complex objects. Here is an example:

>>> Server = fudge.Fake('xmlrpclib.Server').is_a_stub()
>>> pypi = Server('http://pypi.python.org/pypi')
>>> pypi.list_packages()
fake:xmlrpclib.Server().list_packages()
>>> pypi.package_releases()
fake:xmlrpclib.Server().package_releases()

12 Chapter 4. Contents

Fudge Documentation, Release 1.1.0

Stubs like this carry on infinitely:

>>> f = fudge.Fake('base').is_a_stub()
>>> f.one.two.three().four
fake:base.one.two.three().four

Note: When using fudge.Fake.is_a_stub() you can’t lazily access any attributes or methods if they have
the same name as a Fake method, like returns() or with_args(). You would need to declare expectations for
those directly using fudge.expects(), etc.

4.1.10 Working with Arguments

The fudge.Fake.with_args() method optionally allows you to declare expectations of how arguments should
be sent to your object. It’s usually sufficient to expect an exact argument value but sometimes you need to use
fudge.inspector functions for dynamic values.

Here is a short example:

>>> import fudge
>>> from fudge.inspector import arg
>>> image = (fudge.Fake("image")
... .expects("save")
... .with_args("JPEG", arg.endswith(".jpg"), resolution=arg.any())
...)

This declaration is very flexible; it allows the following calls:

>>> image.save("JPEG", "/tmp/unicorns-and-rainbows.jpg", resolution=72)
>>> image.save("JPEG", "/tmp/me-being-serious.jpg", resolution=96)

The Fake class also provides a without_args method, which functions just the opposite. With it, you can declare
arguments that you expect NOT to be provided.

>>> image = (fudge.Fake('image')
... .expects('save')
... .without_args('GIF', filename=arg.endswith('.gif')))

This expectation will pass for any call that does not provide the string ’GIF’ as a positional argument and does not
provide a filename keyword argument that ends in ’.gif’

>>> image.save('JPEG', filename="funny_cat6.jpg")
>>> image.save('total nonsense', {'fizz': 'buzz'})

There also inverted version of all the fudge.inspector.arg methods, available on the
fudge.inspector.arg_not object. The methods all have the same name, but assert the opposite of the
arg versions. See the docstrings for the various fudge.inspector.arg methods for examples of their usage.

fudge.inspector.arg_not can also be called on an object to match anything except that object.

That’s it! See the fudge API for details:

fudge

Fudge is a module for replacing real objects with fakes (mocks, stubs, etc) while testing.

See Using Fudge for common scenarios.

4.1. Using Fudge 13

Fudge Documentation, Release 1.1.0

fudge.patch(*obj_paths)
A test decorator that patches importable names with fakes

Each fake is exposed as an argument to the test:

>>> @fudge.patch('os.remove')
... def test(fake_remove):
... fake_remove.expects_call()
... # do stuff...
...
>>> test()
Traceback (most recent call last):
...
AssertionError: fake:os.remove() was not called

Many paths can be patched at once:

>>> @fudge.patch('os.remove',
... 'shutil.rmtree')
... def test(fake_remove, fake_rmtree):
... fake_remove.is_callable()
... # do stuff...
...
>>> test()

For convenience, the patch method calls fudge.clear_calls(), fudge.verify(), and
fudge.clear_expectations(). For that reason, you must manage all your fake objects within
the test function itself.

Note: If you are using a unittest class, you cannot declare fakes within setUp() unless you manually clear
calls and clear expectations. If you do that, you’ll want to use the fudge.with_fakes() decorator instead
of @patch.

fudge.test(method)
Decorator for a test that uses fakes directly (not patched).

Most of the time you probably want to use fudge.patch() instead.

>>> @fudge.test
... def test():
... db = fudge.Fake('db').expects('connect')
... # do stuff...
...
>>> test()
Traceback (most recent call last):
...
AssertionError: fake:db.connect() was not called

class fudge.Fake(name=None, allows_any_call=False, callable=False, expect_call=False)
A fake object that replaces a real one while testing.

Most calls with a few exceptions return self so that you can chain them together to create readable code.

Instance methods will raise either AssertionError or fudge.FakeDeclarationError

Keyword arguments:

name=None Name of the class, module, or function you mean to replace. If not specified, Fake() will try to
guess the name by inspecting the calling frame (if possible).

allows_any_call=False This is deprecated. Use Fake:is_a_stub() instead.

14 Chapter 4. Contents

Fudge Documentation, Release 1.1.0

callable=False This is deprecated. Use Fake.is_callable() instead.

expect_call=True This is deprecated. Use Fake.expects_call() instead.

calls(call)
Redefine a call.

The fake method will execute your function. I.E.:

>>> f = Fake().provides('hello').calls(lambda: 'Why, hello there')
>>> f.hello()
'Why, hello there'

expects(call_name)
Expect a call.

If the method call_name is never called, then raise an error. I.E.:

>>> session = Fake('session').expects('open').expects('close')
>>> session.open()
>>> fudge.verify()
Traceback (most recent call last):
...
AssertionError: fake:session.close() was not called

Note: If you want to also verify the order these calls are made in, use
fudge.Fake.remember_order(). When using fudge.Fake.next_call() after
expects(...), each new call will be part of the expected order

Declaring expects() multiple times is the same as declaring fudge.Fake.next_call()

expects_call()
The fake must be called.

This is useful for when you stub out a function as opposed to a class. For example:

>>> import fudge
>>> remove = fudge.Fake('os.remove').expects_call()
>>> fudge.verify()
Traceback (most recent call last):
...
AssertionError: fake:os.remove() was not called

has_attr(**attributes)
Sets available attributes.

I.E.:

>>> User = Fake('User').provides('__init__').has_attr(name='Harry')
>>> user = User()
>>> user.name
'Harry'

has_property(**properties)
Sets available properties.

I.E.:

>>> mock_name = Fake().is_callable().returns('Jim Bob')
>>> mock_age = Fake().is_callable().raises(AttributeError('DOB not set'))
>>> user = Fake('User').has_property(name=mock_name, age=mock_age)

4.1. Using Fudge 15

Fudge Documentation, Release 1.1.0

>>> user.name
'Jim Bob'
>>> user.age
Traceback (most recent call last):
...
AttributeError: DOB not set

is_a_stub()
Turns this fake into a stub.

When a stub, any method is allowed to be called on the Fake() instance and any attribute can be accessed.
When an unknown attribute or call is made, a new Fake() is returned. You can of course override any of
this with Fake.expects() and the other methods.

is_callable()
The fake can be called.

This is useful for when you stub out a function as opposed to a class. For example:

>>> import fudge
>>> remove = Fake('os.remove').is_callable()
>>> remove('some/path')

next_call(for_method=None)
Start expecting or providing multiple calls.

Note: next_call() cannot be used in combination with fudge.Fake.times_called()

Up until calling this method, calls are infinite.

For example, before next_call() ...

>>> from fudge import Fake
>>> f = Fake().provides('status').returns('Awake!')
>>> f.status()
'Awake!'
>>> f.status()
'Awake!'

After next_call() ...

>>> from fudge import Fake
>>> f = Fake().provides('status').returns('Awake!')
>>> f = f.next_call().returns('Asleep')
>>> f = f.next_call().returns('Dreaming')
>>> f.status()
'Awake!'
>>> f.status()
'Asleep'
>>> f.status()
'Dreaming'
>>> f.status()
Traceback (most recent call last):
...
AssertionError: This attribute of fake:unnamed can only be called 3 time(s). Call reset() if necessary or fudge.clear_calls().

If you need to affect the next call of something other than the last declared call, use
next_call(for_method="other_call"). Here is an example using getters and setters on a ses-
sion object

16 Chapter 4. Contents

Fudge Documentation, Release 1.1.0

>>> from fudge import Fake
>>> sess = Fake('session').provides('get_count').returns(1)
>>> sess = sess.provides('set_count').with_args(5)

Now go back and adjust return values for get_count()

>>> sess = sess.next_call(for_method='get_count').returns(5)

This allows these calls to be made

>>> sess.get_count()
1
>>> sess.set_count(5)
>>> sess.get_count()
5

When using fudge.Fake.remember_order() in combination with fudge.Fake.expects()
and fudge.Fake.next_call() each new call will be part of the expected order.

provides(call_name)
Provide a call.

The call acts as a stub – no error is raised if it is not called.:

>>> session = Fake('session').provides('open').provides('close')
>>> import fudge
>>> fudge.clear_expectations() # from any previously declared fakes
>>> fudge.clear_calls()
>>> session.open()
>>> fudge.verify() # close() not called but no error

Declaring provides() multiple times is the same as declaring fudge.Fake.next_call()

raises(exc)
Set last call to raise an exception class or instance.

For example:

>>> import fudge
>>> db = fudge.Fake('db').provides('insert').raises(ValueError("not enough parameters for insert"))
>>> db.insert()
Traceback (most recent call last):
...
ValueError: not enough parameters for insert

remember_order()
Verify that subsequent fudge.Fake.expects() are called in the right order.

For example:

>>> import fudge
>>> db = fudge.Fake('db').remember_order().expects('insert').expects('update')
>>> db.update()
Traceback (most recent call last):
...
AssertionError: Call #1 was fake:db.update(); Expected: #1 fake:db.insert(), #2 fake:db.update(), end
>>> fudge.clear_expectations()

When declaring multiple calls using fudge.Fake.next_call(), each subsequent call will be added
to the expected order of calls

4.1. Using Fudge 17

Fudge Documentation, Release 1.1.0

>>> import fudge
>>> sess = fudge.Fake("session").remember_order().expects("get_id").returns(1)
>>> sess = sess.expects("set_id").with_args(5)
>>> sess = sess.next_call(for_method="get_id").returns(5)

Multiple calls to get_id() are now expected

>>> sess.get_id()
1
>>> sess.set_id(5)
>>> sess.get_id()
5
>>> fudge.verify()
>>> fudge.clear_expectations()

returns(val)
Set the last call to return a value.

Set a static value to return when a method is called. I.E.:

>>> f = Fake().provides('get_number').returns(64)
>>> f.get_number()
64

returns_fake(*args, **kwargs)
Set the last call to return a new fudge.Fake.

Any given arguments are passed to the fudge.Fake constructor

Take note that this is different from the cascading nature of other methods. This will return an instance of
the new Fake, not self, so you should be careful to store its return value in a new variable.

I.E.:

>>> session = Fake('session')
>>> query = session.provides('query').returns_fake(name="Query")
>>> assert query is not session
>>> query = query.provides('one').returns(['object'])

>>> session.query().one()
['object']

times_called(n)
Set the number of times an object can be called.

When working with provided calls, you’ll only see an error if the expected call count is exceeded

>>> auth = Fake('auth').provides('login').times_called(1)
>>> auth.login()
>>> auth.login()
Traceback (most recent call last):
...
AssertionError: fake:auth.login() was called 2 time(s). Expected 1.

When working with expected calls, you’ll see an error if the call count is never met

>>> import fudge
>>> auth = fudge.Fake('auth').expects('login').times_called(2)
>>> auth.login()
>>> fudge.verify()
Traceback (most recent call last):

18 Chapter 4. Contents

Fudge Documentation, Release 1.1.0

...
AssertionError: fake:auth.login() was called 1 time(s). Expected 2.

Note: This cannot be used in combination with fudge.Fake.next_call()

with_arg_count(count)
Set the last call to expect an exact argument count.

I.E.:

>>> auth = Fake('auth').provides('login').with_arg_count(2)
>>> auth.login('joe_user') # forgot password
Traceback (most recent call last):
...
AssertionError: fake:auth.login() was called with 1 arg(s) but expected 2

with_args(*args, **kwargs)
Set the last call to expect specific argument values.

The app under test must send all declared arguments and keyword arguments otherwise your test will raise
an AssertionError. For example:

>>> import fudge
>>> counter = fudge.Fake('counter').expects('increment').with_args(25, table='hits')
>>> counter.increment(24, table='clicks')
Traceback (most recent call last):
...
AssertionError: fake:counter.increment(25, table='hits') was called unexpectedly with args (24, table='clicks')

If you need to work with dynamic argument values consider using
fudge.Fake.with_matching_args() to make looser declarations. You can also use
fudge.inspector functions. Here is an example of providing a more flexible with_args()
declaration using inspectors:

>>> import fudge
>>> from fudge.inspector import arg
>>> counter = fudge.Fake('counter')
>>> counter = counter.expects('increment').with_args(
... arg.any(),
... table=arg.endswith("hits"))
...

The above declaration would allow you to call counter like this:

>>> counter.increment(999, table="image_hits")
>>> fudge.verify()

Or like this:

>>> counter.increment(22, table="user_profile_hits")
>>> fudge.verify()

with_kwarg_count(count)
Set the last call to expect an exact count of keyword arguments.

I.E.:

>>> auth = Fake('auth').provides('login').with_kwarg_count(2)
>>> auth.login(username='joe') # forgot password=
Traceback (most recent call last):

4.1. Using Fudge 19

Fudge Documentation, Release 1.1.0

...
AssertionError: fake:auth.login() was called with 1 keyword arg(s) but expected 2

with_matching_args(*args, **kwargs)
Set the last call to expect specific argument values if those arguments exist.

Unlike fudge.Fake.with_args() use this if you want to only declare expectations about matching
arguments. Any unknown keyword arguments used by the app under test will be allowed.

For example, you can declare positional arguments but ignore keyword arguments:

>>> import fudge
>>> db = fudge.Fake('db').expects('transaction').with_matching_args('insert')

With this declaration, any keyword argument is allowed:

>>> db.transaction('insert', isolation_level='lock')
>>> db.transaction('insert', isolation_level='shared')
>>> db.transaction('insert', retry_on_error=True)

Note: you may get more mileage out of fudge.inspector functions as described in
fudge.Fake.with_args()

without_args(*args, **kwargs)
Set the last call to expect that certain arguments will not exist.

This is the opposite of fudge.Fake.with_matching_args(). It will fail if any of the arguments
are passed.

>>> import fudge
>>> query = fudge.Fake('query').expects_call().without_args(
... 'http://example.com', name="Steve"
...)

>>> query('http://python.org', name="Joe")
>>> query('http://example.com')
Traceback (most recent call last):
...
AssertionError: fake:query() was called unexpectedly with arg http://example.com
>>> query("Joe", "Frank", "Bartholomew", "Steve")
>>> query(name='Steve')
Traceback (most recent call last):
...
AssertionError: fake:query() was called unexpectedly with kwarg name=Steve
>>> query('http://python.org', name='Steve')
Traceback (most recent call last):
...
AssertionError: fake:query() was called unexpectedly with kwarg name=Steve
>>> query(city='Chicago', name='Steve')
Traceback (most recent call last):
...
AssertionError: fake:query() was called unexpectedly with kwarg name=Steve

>>> query.expects_call().without_args('http://example2.com')
fake:query
>>> query('foobar')
>>> query('foobar', 'http://example2.com')
Traceback (most recent call last):
...

20 Chapter 4. Contents

Fudge Documentation, Release 1.1.0

AssertionError: fake:query() was called unexpectedly with arg http://example2.com

>>> query.expects_call().without_args(name="Hieronymus")
fake:query
>>> query("Gottfried", "Hieronymus")
>>> query(name="Wexter", other_name="Hieronymus")
>>> query('asdf', name="Hieronymus")
Traceback (most recent call last):
...
AssertionError: fake:query() was called unexpectedly with kwarg name=Hieronymus
>>> query(name="Hieronymus")
Traceback (most recent call last):
...
AssertionError: fake:query() was called unexpectedly with kwarg name=Hieronymus

>>> query = fudge.Fake('query').expects_call().without_args(
... 'http://example.com', name="Steve"
...).with_args('dog')
>>> query('dog')
>>> query('dog', 'http://example.com')
Traceback (most recent call last):
...
AssertionError: fake:query('dog') was called unexpectedly with args ('dog', 'http://example.com')
>>> query()
Traceback (most recent call last):
...
AssertionError: fake:query('dog') was called unexpectedly with args ()

fudge.clear_calls()
Begin a new set of calls on fake objects.

Specifically, clear out any calls that were made on previously registered fake objects and reset all call stacks.
You should call this any time you begin making calls on fake objects.

This is also available in fudge.patch(), fudge.test() and fudge.with_fakes()

fudge.verify()
Verify that all methods have been called as expected.

Specifically, analyze all registered fake objects and raise an AssertionError if an expected call was never made
to one or more objects.

This is also available in fudge.patch(), fudge.test() and fudge.with_fakes()

fudge.with_fakes(method)
Decorator that calls fudge.clear_calls() before method() and fudge.verify() afterwards.

class fudge.FakeDeclarationError
Exception in how this fudge.Fake was declared.

fudge.inspector

Value inspectors that can be passed to fudge.Fake.with_args() for more expressive argument matching.

As a mnemonic device, an instance of the fudge.inspector.ValueInspector is available as “arg” :

>>> import fudge
>>> from fudge.inspector import arg
>>> image = fudge.Fake("image").expects("save").with_args(arg.endswith(".jpg"))

4.1. Using Fudge 21

Fudge Documentation, Release 1.1.0

In other words, this declares that the first argument to image.save() should end with the suffix ”.jpg”

class fudge.inspector.ValueInspector
Dispatches tests to inspect values.

any()
Match any value.

This is pretty much just a placeholder for when you want to inspect multiple arguments but don’t care
about all of them.

>>> import fudge
>>> from fudge.inspector import arg
>>> db = fudge.Fake("db")
>>> db = db.expects("transaction").with_args(
... "insert", isolation_level=arg.any())
...
>>> db.transaction("insert", isolation_level="lock")
>>> fudge.verify()

This also passes:

>>> db.transaction("insert", isolation_level="autocommit")
>>> fudge.verify()

The arg_not version will not match anything and is probably not very useful.

>>> import fudge
>>> from fudge.inspector import arg_not
>>> query = fudge.Fake('query').expects_call().with_args(
... arg_not.any()
...)
>>> query('asdf')
Traceback (most recent call last):
...
AssertionError: fake:query((NOT) arg.any()) was called unexpectedly with args ('asdf')
>>> query()
Traceback (most recent call last):
...
AssertionError: fake:query((NOT) arg.any()) was called unexpectedly with args ()

any_value()
DEPRECATED: use arg.any()

contains(part)
Ensure that a value contains some part.

This is useful for when you only care that a substring or subelement exists in a value.

>>> import fudge
>>> from fudge.inspector import arg
>>> addressbook = fudge.Fake().expects("import_").with_args(
... arg.contains("Baba Brooks"))
...
>>> addressbook.import_("Bill Brooks; Baba Brooks; Henry Brooks;")
>>> fudge.verify()

Since contains() just invokes the __in__() method, checking that a list item is present works as expected :

>>> colorpicker = fudge.Fake("colorpicker")
>>> colorpicker = colorpicker.expects("select").with_args(arg.contains("red"))

22 Chapter 4. Contents

Fudge Documentation, Release 1.1.0

>>> colorpicker.select(["green","red","blue"])
>>> fudge.verify()

arg_not.contains matches an argument not containing some element.

>>> from fudge.inspector import arg_not
>>> colorpicker = colorpicker.expects('select').with_args(arg_not.contains('blue'))
>>> colorpicker.select('reddish')
>>> colorpicker.select(['red', 'green'])
>>> fudge.verify()

>>> colorpicker.select('blue-green')
Traceback (most recent call last):
...
AssertionError: fake:colorpicker.select(arg.contains('red'))[0] was called unexpectedly with args ('blue-green')
>>> colorpicker.select(['red', 'blue', 'green'])
Traceback (most recent call last):
...
AssertionError: fake:colorpicker.select((NOT) arg.contains('blue'))[1] was called unexpectedly with args (['red', 'blue', 'green'])

endswith(part)
Ensure that a value ends with some part.

This is useful for when values with dynamic parts that are hard to replicate.

>>> import fudge
>>> from fudge.inspector import arg
>>> tmpfile = fudge.Fake("tempfile").expects("mkname").with_args(
... arg.endswith(".tmp"))
...
>>> tmpfile.mkname("7AakkkLazUUKHKJgh908JKjlkh.tmp")
>>> fudge.verify()

The arg_not version works as expected, matching arguments that do not end with the given element.

>>> from fudge.inspector import arg_not
>>> query = fudge.Fake('query').expects_call().with_args(arg_not.endswith('Ringo'))
>>> query('John, Paul, George and Steve')
>>> fudge.verify()

has_attr(**attributes)
Ensure that an object value has at least these attributes.

This is useful for testing that an object has specific attributes.

>>> import fudge
>>> from fudge.inspector import arg
>>> db = fudge.Fake("db").expects("update").with_args(arg.has_attr(
... first_name="Bob",
... last_name="James"))
...
>>> class User:
... first_name = "Bob"
... last_name = "James"
... job = "jazz musician" # this is ignored
...
>>> db.update(User())
>>> fudge.verify()

In case of error, the other object’s __repr__ will be invoked:

4.1. Using Fudge 23

Fudge Documentation, Release 1.1.0

>>> class User:
... first_name = "Bob"
...
... def __repr__(self):
... return repr(dict(first_name=self.first_name))
...
>>> db.update(User())
Traceback (most recent call last):
...
AssertionError: fake:db.update(arg.has_attr(first_name='Bob', last_name='James')) was called unexpectedly with args ({'first_name': 'Bob'})

When called as a method on arg_not, has_attr does the opposite, and ensures that the argument does not
have the specified attributes.

>>> from fudge.inspector import arg_not
>>> class User:
... first_name = 'Bob'
... last_name = 'Dobbs'
>>> query = fudge.Fake('query').expects_call().with_args(
... arg_not.has_attr(first_name='James')
...)
>>> query(User())
>>> fudge.verify()

isinstance(cls)
Check that a value is instance of specified class.

>>> import fudge
>>> from fudge.inspector import arg
>>> system = fudge.Fake("system")
>>> system = system.expects("set_status").with_args(arg.isinstance(str))
>>> system.set_status("active")
>>> fudge.verify()

Should return True if it’s allowed class or False if not.

>>> system.set_status(31337)
Traceback (most recent call last):
...
AssertionError: fake:system.set_status(arg.isinstance('str')) was called unexpectedly with args (31337)

passes_test(test)
Check that a value passes some test.

For custom assertions you may need to create your own callable to inspect and verify a value.

>>> def is_valid(s):
... if s in ('active','deleted'):
... return True
... else:
... return False
...
>>> import fudge
>>> from fudge.inspector import arg
>>> system = fudge.Fake("system")
>>> system = system.expects("set_status").with_args(arg.passes_test(is_valid))
>>> system.set_status("active")
>>> fudge.verify()

24 Chapter 4. Contents

Fudge Documentation, Release 1.1.0

The callable you pass takes one argument, the value, and should return True if it’s an acceptable value or
False if not.

>>> system.set_status("sleep")
Traceback (most recent call last):
...
AssertionError: fake:system.set_status(arg.passes_test(<function is_valid at...)) was called unexpectedly with args ('sleep')

If it makes more sense to perform assertions in your test function then be sure to return True :

>>> def is_valid(s):
... assert s in ('active','deleted'), (
... "Unexpected status value: %s" % s)
... return True
...
>>> import fudge
>>> from fudge.inspector import arg
>>> system = fudge.Fake("system")
>>> system = system.expects("set_status").with_args(arg.passes_test(is_valid))
>>> system.set_status("sleep")
Traceback (most recent call last):
...
AssertionError: Unexpected status value: sleep

Using the inverted version, arg_not.passes_test, asserts that the argument does not pass the provided test.

>>> from fudge.inspector import arg_not
>>> query = fudge.Fake('query').expects_call().with_args(
... arg_not.passes_test(lambda x: x > 10)
...)
>>> query(5)
>>> fudge.verify()

startswith(part)
Ensure that a value starts with some part.

This is useful for when values with dynamic parts that are hard to replicate.

>>> import fudge
>>> from fudge.inspector import arg
>>> keychain = fudge.Fake("keychain").expects("accept_key").with_args(
... arg.startswith("_key"))
...
>>> keychain.accept_key("_key-18657yojgaodfty98618652olkj[oollk]")
>>> fudge.verify()

Using arg_not.startswith instead ensures that arguments do not start with that part.

>>> from fudge.inspector import arg_not
>>> query = fudge.Fake('query').expects_call().with_args(
... arg_not.startswith('asdf')
...)
>>> query('qwerty')
>>> fudge.verify()

class fudge.inspector.NotValueInspector
Inherits all the argument methods from ValueInspector, but inverts them to expect the opposite. See the ValueIn-
spector method docstrings for examples.

__call__(thing)
This will match any value except the argument given.

4.1. Using Fudge 25

Fudge Documentation, Release 1.1.0

>>> import fudge
>>> from fudge.inspector import arg, arg_not
>>> query = fudge.Fake('query').expects_call().with_args(
... arg.any(),
... arg_not('foobar')
...)
>>> query([1, 2, 3], 'asdf')
>>> query('asdf', 'foobar')
Traceback (most recent call last):
...
AssertionError: fake:query(arg.any(), arg_not(foobar)) was called unexpectedly with args ('asdf', 'foobar')

fudge.patcher

Patching utilities for working with fake objects.

See Using Fudge for common scenarios.

fudge.patcher.with_patched_object(obj, attr_name, patched_value)
Decorator that patches an object before the decorated method is called and restores it afterwards.

This is a wrapper around fudge.patcher.patch_object()

Example:

>>> from fudge import with_patched_object
>>> class Session:
... state = 'clean'
...
>>> @with_patched_object(Session, "state", "dirty")
... def test():
... print Session.state
...
>>> test()
dirty
>>> print Session.state
clean

fudge.patcher.patched_context(obj, attr_name, patched_value)
A context manager to patch an object temporarily during a with statement block.

This is a wrapper around fudge.patcher.patch_object()

>>> from fudge import patched_context
>>> class Session:
... state = 'clean'
...
>>> with patched_context(Session, "state", "dirty"):
... print Session.state
...
dirty
>>> print Session.state
clean

fudge.patcher.patch_object(obj, attr_name, patched_value)
Patches an object and returns an instance of fudge.patcher.PatchHandler for later restoration.

Note that if obj is not an object but a path to a module then it will be imported.

You may want to use a more convenient wrapper with_patched_object() or patched_context()

26 Chapter 4. Contents

http://www.python.org/dev/peps/pep-0343/

Fudge Documentation, Release 1.1.0

Example:

>>> from fudge import patch_object
>>> class Session:
... state = 'clean'
...
>>> patched_session = patch_object(Session, "state", "dirty")
>>> Session.state
'dirty'
>>> patched_session.restore()
>>> Session.state
'clean'

Here is another example showing how to patch multiple objects at once:

>>> class Session:
... state = 'clean'
...
>>> class config:
... session_strategy = 'database'
...
>>> patches = [
... patch_object(config, "session_strategy", "filesystem"),
... patch_object(Session, "state", "dirty")
...]
>>> try:
... # your app under test would run here ...
... print "(while patched)"
... print "config.session_strategy=%r" % config.session_strategy
... print "Session.state=%r" % Session.state
... finally:
... for p in patches:
... p.restore()
... print "(patches restored)"
(while patched)
config.session_strategy='filesystem'
Session.state='dirty'
(patches restored)
>>> config.session_strategy
'database'
>>> Session.state
'clean'

class fudge.patcher.PatchHandler(orig_object, attr_name)
Low level patch handler that memorizes a patch so you can restore it later.

You can use more convenient wrappers with_patched_object() and patched_context()

patch(patched_value)
Set a new value for the attribute of the object.

restore()
Restore the saved value for the attribute of the object.

4.2 Fudge For JavaScript

Although Ersatz is a port of Mocha to JavaScript and that’s pretty much what Fudge is, I couldn’t get Ersatz to work
with one of my libraries because it uses Prototype. So I started porting Fudge to JavaScript. As of this writing it has

4.2. Fudge For JavaScript 27

http://github.com/centro/ersatz/tree/master
http://mocha.rubyforge.org/

Fudge Documentation, Release 1.1.0

only been partially implemented.

4.2.1 Install

Download the Fudge source distribution and copy javascript/fudge/ to your webroot. To use it in your tests
all you need is a script tag like this:

<script src="fudge/fudge.js" type="text/javascript"></script>

If you want to run Fudge’s own tests, then cd into the javascript/ directory, start a simple webserver:

$ python fudge/testserver.py

and open http://localhost:8000/tests/test_fudge.html Take note that while Fudge’s tests require jQuery, Fudge itself
does not require jQuery.

4.2.2 Usage

Refer to Using Fudge in Python to get an idea for how to use the JavaScript version. As mentioned before, the
JavaScript port is not yet fully implemented.

Here is a quick example:

// if you had e.g. a session object that looked something like:
yourapp = {};
yourapp.session = {

set: function(key, value) {
// ...

}
}
yourapp.startup = function() {

yourapp.session.set('saw_landing_page',true);
};

// and if you wanted to test the startup() method above, then you could
// declare a fake object for a test:
var fake_session = new fudge.Fake('session').expects('set').with_args('saw_landing_page',true);

// patch your production code:
yourapp.session = fake_session;

// and run a test:
fudge.clear_calls();
yourapp.startup();
fudge.verify();

4.3 Why Another Mock Framework?

Can’t you do most of this in plain old Python? If you’re just replacing methods then yes but when you need to manage
expectations, it’s not so easy.

Fudge started when a co-worker showed me Mocha for Ruby. I liked it because it was a much simpler version of
jMock and jMock allows you to do two things at once: 1) build a fake version of a real object and 2) inspect that your
code uses it correctly (post mortem). Up until now, I’ve built all my mock logic in plain Python and noticed that I spent

28 Chapter 4. Contents

http://localhost:8000/tests/test_fudge.html
http://mocha.rubyforge.org/
http://www.jmock.org/

Fudge Documentation, Release 1.1.0

gobs of code doing these two things in separate places. The jMock approach gets rid of the need for a post mortem
and the expectation code is very readable.

What about all the other mock frameworks for Python? I really didn’t want to build another mock framework, honestly.
Here were my observations of the scenery:

• pMock (based on jMock)

– This of course is based on the same jMock interface that I like. However, its site claims it has not been
maintained since 2004 and besides that jMock is too over engineered for my tastes and pMock does not
attempt to fix that.

• minimock

– As far as I can tell, there is no easy, out-of-the-box way to use minimock in anything other than a doctest.

– It doesn’t really deal with expectations, just replacements (stubbing).

• mock

– I didn’t like how mock focused on post mortem inspection.

• pyMock (based on EasyMock)

– This uses a record / playback technique whereby you act upon your real objects then flip a switch and they
become fake. This seems like it has some benefits for maintenance but I’m not sure that the overhead of
recording with real objects is worth it. I suppose you’d need a real database, a real web service, etc.

• Mox (based on EasyMock)

– This also uses the record / playback technique but with a DSL (domain specific language). It was brought
to my attention after creating Fudge but thought it was worth mentioning.

• mocker (based on EasyMock and others)

– This was also pointed out to me after developing Fudge.

– Mocker is another record / playback implementation but seems to have a cleaner interface than most. I still
do not see the practicality of record / playback. How do you write tests in record mode? I am probably
missing it but nowhere in the docs do I see practical examples for creating test code. Instead the examples
are interactive sessions which is not how I typically write tests.

– The docs for mocker, like docs for other tools, do not focus on any real-world problem that a mock
framework can solve. This is hard for my brain. It is hard for me to look at code such as obj.hello() and
imagine that this would be useful for, say, mocking out sendmail().

– However, mocker certainly looks like it has more features than Fudge so it is worth checking out.

4.4 Migrating from Fudge 0.9 to 1.0

After many 0.9.x versions and some great input from the community, Fudge has evolved to 1.0. This introduces a
much simpler API and while it doesn’t deprecate the old API you’ll probably want to update your code.

Take a look at the new code examples in using Fudge to get a feel for it.

Here is a summary of changes:

4.4. Migrating from Fudge 0.9 to 1.0 29

http://pmock.sourceforge.net/
http://www.jmock.org/
http://pypi.python.org/pypi/MiniMock
http://www.voidspace.org.uk/python/mock.html
http://theblobshop.com/pymock/
http://www.easymock.org/
http://code.google.com/p/pymox/
http://www.easymock.org/
http://labix.org/mocker
http://www.easymock.org/
http://farmdev.com/thoughts/70/fudge-another-python-mock-framework/

Fudge Documentation, Release 1.1.0

4.4.1 The new @patch and @test decorators

You no longer have to worry about when and where to call fudge.clear_calls(), fudge.verify(), and
fudge.clear_expectations()! Instead, just wrap each test in the fudge.patch() decorator and declare
expectations within your test. If you don’t need to patch anything, use the fudge.test() decorator.

4.4.2 Expectations that were declared in setup

If you were declaring expectations in a module-level setup() or unittest.setUp() method then you either
have to continue managing the clear/verify calls manually and decorate your tests with fudge.with_fakes() or
you need to move all declaration into the test function (not setup) using the fudge.patch() decorator.

30 Chapter 4. Contents

CHAPTER 5

API Reference

5.1 fudge

Fudge is a module for replacing real objects with fakes (mocks, stubs, etc) while testing.

See Using Fudge for common scenarios.

fudge.patch(*obj_paths)
A test decorator that patches importable names with fakes

Each fake is exposed as an argument to the test:

>>> @fudge.patch('os.remove')
... def test(fake_remove):
... fake_remove.expects_call()
... # do stuff...
...
>>> test()
Traceback (most recent call last):
...
AssertionError: fake:os.remove() was not called

Many paths can be patched at once:

>>> @fudge.patch('os.remove',
... 'shutil.rmtree')
... def test(fake_remove, fake_rmtree):
... fake_remove.is_callable()
... # do stuff...
...
>>> test()

For convenience, the patch method calls fudge.clear_calls(), fudge.verify(), and
fudge.clear_expectations(). For that reason, you must manage all your fake objects within
the test function itself.

Note: If you are using a unittest class, you cannot declare fakes within setUp() unless you manually clear
calls and clear expectations. If you do that, you’ll want to use the fudge.with_fakes() decorator instead
of @patch.

fudge.test(method)
Decorator for a test that uses fakes directly (not patched).

Most of the time you probably want to use fudge.patch() instead.

31

Fudge Documentation, Release 1.1.0

>>> @fudge.test
... def test():
... db = fudge.Fake('db').expects('connect')
... # do stuff...
...
>>> test()
Traceback (most recent call last):
...
AssertionError: fake:db.connect() was not called

class fudge.Fake(name=None, allows_any_call=False, callable=False, expect_call=False)
A fake object that replaces a real one while testing.

Most calls with a few exceptions return self so that you can chain them together to create readable code.

Instance methods will raise either AssertionError or fudge.FakeDeclarationError

Keyword arguments:

name=None Name of the class, module, or function you mean to replace. If not specified, Fake() will try to
guess the name by inspecting the calling frame (if possible).

allows_any_call=False This is deprecated. Use Fake:is_a_stub() instead.

callable=False This is deprecated. Use Fake.is_callable() instead.

expect_call=True This is deprecated. Use Fake.expects_call() instead.

calls(call)
Redefine a call.

The fake method will execute your function. I.E.:

>>> f = Fake().provides('hello').calls(lambda: 'Why, hello there')
>>> f.hello()
'Why, hello there'

expects(call_name)
Expect a call.

If the method call_name is never called, then raise an error. I.E.:

>>> session = Fake('session').expects('open').expects('close')
>>> session.open()
>>> fudge.verify()
Traceback (most recent call last):
...
AssertionError: fake:session.close() was not called

Note: If you want to also verify the order these calls are made in, use
fudge.Fake.remember_order(). When using fudge.Fake.next_call() after
expects(...), each new call will be part of the expected order

Declaring expects() multiple times is the same as declaring fudge.Fake.next_call()

expects_call()
The fake must be called.

This is useful for when you stub out a function as opposed to a class. For example:

32 Chapter 5. API Reference

Fudge Documentation, Release 1.1.0

>>> import fudge
>>> remove = fudge.Fake('os.remove').expects_call()
>>> fudge.verify()
Traceback (most recent call last):
...
AssertionError: fake:os.remove() was not called

has_attr(**attributes)
Sets available attributes.

I.E.:

>>> User = Fake('User').provides('__init__').has_attr(name='Harry')
>>> user = User()
>>> user.name
'Harry'

has_property(**properties)
Sets available properties.

I.E.:

>>> mock_name = Fake().is_callable().returns('Jim Bob')
>>> mock_age = Fake().is_callable().raises(AttributeError('DOB not set'))
>>> user = Fake('User').has_property(name=mock_name, age=mock_age)
>>> user.name
'Jim Bob'
>>> user.age
Traceback (most recent call last):
...
AttributeError: DOB not set

is_a_stub()
Turns this fake into a stub.

When a stub, any method is allowed to be called on the Fake() instance and any attribute can be accessed.
When an unknown attribute or call is made, a new Fake() is returned. You can of course override any of
this with Fake.expects() and the other methods.

is_callable()
The fake can be called.

This is useful for when you stub out a function as opposed to a class. For example:

>>> import fudge
>>> remove = Fake('os.remove').is_callable()
>>> remove('some/path')

next_call(for_method=None)
Start expecting or providing multiple calls.

Note: next_call() cannot be used in combination with fudge.Fake.times_called()

Up until calling this method, calls are infinite.

For example, before next_call() ...

>>> from fudge import Fake
>>> f = Fake().provides('status').returns('Awake!')
>>> f.status()

5.1. fudge 33

Fudge Documentation, Release 1.1.0

'Awake!'
>>> f.status()
'Awake!'

After next_call() ...

>>> from fudge import Fake
>>> f = Fake().provides('status').returns('Awake!')
>>> f = f.next_call().returns('Asleep')
>>> f = f.next_call().returns('Dreaming')
>>> f.status()
'Awake!'
>>> f.status()
'Asleep'
>>> f.status()
'Dreaming'
>>> f.status()
Traceback (most recent call last):
...
AssertionError: This attribute of fake:unnamed can only be called 3 time(s). Call reset() if necessary or fudge.clear_calls().

If you need to affect the next call of something other than the last declared call, use
next_call(for_method="other_call"). Here is an example using getters and setters on a ses-
sion object

>>> from fudge import Fake
>>> sess = Fake('session').provides('get_count').returns(1)
>>> sess = sess.provides('set_count').with_args(5)

Now go back and adjust return values for get_count()

>>> sess = sess.next_call(for_method='get_count').returns(5)

This allows these calls to be made

>>> sess.get_count()
1
>>> sess.set_count(5)
>>> sess.get_count()
5

When using fudge.Fake.remember_order() in combination with fudge.Fake.expects()
and fudge.Fake.next_call() each new call will be part of the expected order.

provides(call_name)
Provide a call.

The call acts as a stub – no error is raised if it is not called.:

>>> session = Fake('session').provides('open').provides('close')
>>> import fudge
>>> fudge.clear_expectations() # from any previously declared fakes
>>> fudge.clear_calls()
>>> session.open()
>>> fudge.verify() # close() not called but no error

Declaring provides() multiple times is the same as declaring fudge.Fake.next_call()

raises(exc)
Set last call to raise an exception class or instance.

34 Chapter 5. API Reference

Fudge Documentation, Release 1.1.0

For example:

>>> import fudge
>>> db = fudge.Fake('db').provides('insert').raises(ValueError("not enough parameters for insert"))
>>> db.insert()
Traceback (most recent call last):
...
ValueError: not enough parameters for insert

remember_order()
Verify that subsequent fudge.Fake.expects() are called in the right order.

For example:

>>> import fudge
>>> db = fudge.Fake('db').remember_order().expects('insert').expects('update')
>>> db.update()
Traceback (most recent call last):
...
AssertionError: Call #1 was fake:db.update(); Expected: #1 fake:db.insert(), #2 fake:db.update(), end
>>> fudge.clear_expectations()

When declaring multiple calls using fudge.Fake.next_call(), each subsequent call will be added
to the expected order of calls

>>> import fudge
>>> sess = fudge.Fake("session").remember_order().expects("get_id").returns(1)
>>> sess = sess.expects("set_id").with_args(5)
>>> sess = sess.next_call(for_method="get_id").returns(5)

Multiple calls to get_id() are now expected

>>> sess.get_id()
1
>>> sess.set_id(5)
>>> sess.get_id()
5
>>> fudge.verify()
>>> fudge.clear_expectations()

returns(val)
Set the last call to return a value.

Set a static value to return when a method is called. I.E.:

>>> f = Fake().provides('get_number').returns(64)
>>> f.get_number()
64

returns_fake(*args, **kwargs)
Set the last call to return a new fudge.Fake.

Any given arguments are passed to the fudge.Fake constructor

Take note that this is different from the cascading nature of other methods. This will return an instance of
the new Fake, not self, so you should be careful to store its return value in a new variable.

I.E.:

>>> session = Fake('session')
>>> query = session.provides('query').returns_fake(name="Query")
>>> assert query is not session

5.1. fudge 35

Fudge Documentation, Release 1.1.0

>>> query = query.provides('one').returns(['object'])

>>> session.query().one()
['object']

times_called(n)
Set the number of times an object can be called.

When working with provided calls, you’ll only see an error if the expected call count is exceeded

>>> auth = Fake('auth').provides('login').times_called(1)
>>> auth.login()
>>> auth.login()
Traceback (most recent call last):
...
AssertionError: fake:auth.login() was called 2 time(s). Expected 1.

When working with expected calls, you’ll see an error if the call count is never met

>>> import fudge
>>> auth = fudge.Fake('auth').expects('login').times_called(2)
>>> auth.login()
>>> fudge.verify()
Traceback (most recent call last):
...
AssertionError: fake:auth.login() was called 1 time(s). Expected 2.

Note: This cannot be used in combination with fudge.Fake.next_call()

with_arg_count(count)
Set the last call to expect an exact argument count.

I.E.:

>>> auth = Fake('auth').provides('login').with_arg_count(2)
>>> auth.login('joe_user') # forgot password
Traceback (most recent call last):
...
AssertionError: fake:auth.login() was called with 1 arg(s) but expected 2

with_args(*args, **kwargs)
Set the last call to expect specific argument values.

The app under test must send all declared arguments and keyword arguments otherwise your test will raise
an AssertionError. For example:

>>> import fudge
>>> counter = fudge.Fake('counter').expects('increment').with_args(25, table='hits')
>>> counter.increment(24, table='clicks')
Traceback (most recent call last):
...
AssertionError: fake:counter.increment(25, table='hits') was called unexpectedly with args (24, table='clicks')

If you need to work with dynamic argument values consider using
fudge.Fake.with_matching_args() to make looser declarations. You can also use
fudge.inspector functions. Here is an example of providing a more flexible with_args()
declaration using inspectors:

36 Chapter 5. API Reference

Fudge Documentation, Release 1.1.0

>>> import fudge
>>> from fudge.inspector import arg
>>> counter = fudge.Fake('counter')
>>> counter = counter.expects('increment').with_args(
... arg.any(),
... table=arg.endswith("hits"))
...

The above declaration would allow you to call counter like this:

>>> counter.increment(999, table="image_hits")
>>> fudge.verify()

Or like this:

>>> counter.increment(22, table="user_profile_hits")
>>> fudge.verify()

with_kwarg_count(count)
Set the last call to expect an exact count of keyword arguments.

I.E.:

>>> auth = Fake('auth').provides('login').with_kwarg_count(2)
>>> auth.login(username='joe') # forgot password=
Traceback (most recent call last):
...
AssertionError: fake:auth.login() was called with 1 keyword arg(s) but expected 2

with_matching_args(*args, **kwargs)
Set the last call to expect specific argument values if those arguments exist.

Unlike fudge.Fake.with_args() use this if you want to only declare expectations about matching
arguments. Any unknown keyword arguments used by the app under test will be allowed.

For example, you can declare positional arguments but ignore keyword arguments:

>>> import fudge
>>> db = fudge.Fake('db').expects('transaction').with_matching_args('insert')

With this declaration, any keyword argument is allowed:

>>> db.transaction('insert', isolation_level='lock')
>>> db.transaction('insert', isolation_level='shared')
>>> db.transaction('insert', retry_on_error=True)

Note: you may get more mileage out of fudge.inspector functions as described in
fudge.Fake.with_args()

without_args(*args, **kwargs)
Set the last call to expect that certain arguments will not exist.

This is the opposite of fudge.Fake.with_matching_args(). It will fail if any of the arguments
are passed.

>>> import fudge
>>> query = fudge.Fake('query').expects_call().without_args(
... 'http://example.com', name="Steve"
...)

5.1. fudge 37

Fudge Documentation, Release 1.1.0

>>> query('http://python.org', name="Joe")
>>> query('http://example.com')
Traceback (most recent call last):
...
AssertionError: fake:query() was called unexpectedly with arg http://example.com
>>> query("Joe", "Frank", "Bartholomew", "Steve")
>>> query(name='Steve')
Traceback (most recent call last):
...
AssertionError: fake:query() was called unexpectedly with kwarg name=Steve
>>> query('http://python.org', name='Steve')
Traceback (most recent call last):
...
AssertionError: fake:query() was called unexpectedly with kwarg name=Steve
>>> query(city='Chicago', name='Steve')
Traceback (most recent call last):
...
AssertionError: fake:query() was called unexpectedly with kwarg name=Steve

>>> query.expects_call().without_args('http://example2.com')
fake:query
>>> query('foobar')
>>> query('foobar', 'http://example2.com')
Traceback (most recent call last):
...
AssertionError: fake:query() was called unexpectedly with arg http://example2.com

>>> query.expects_call().without_args(name="Hieronymus")
fake:query
>>> query("Gottfried", "Hieronymus")
>>> query(name="Wexter", other_name="Hieronymus")
>>> query('asdf', name="Hieronymus")
Traceback (most recent call last):
...
AssertionError: fake:query() was called unexpectedly with kwarg name=Hieronymus
>>> query(name="Hieronymus")
Traceback (most recent call last):
...
AssertionError: fake:query() was called unexpectedly with kwarg name=Hieronymus

>>> query = fudge.Fake('query').expects_call().without_args(
... 'http://example.com', name="Steve"
...).with_args('dog')
>>> query('dog')
>>> query('dog', 'http://example.com')
Traceback (most recent call last):
...
AssertionError: fake:query('dog') was called unexpectedly with args ('dog', 'http://example.com')
>>> query()
Traceback (most recent call last):
...
AssertionError: fake:query('dog') was called unexpectedly with args ()

fudge.clear_calls()
Begin a new set of calls on fake objects.

Specifically, clear out any calls that were made on previously registered fake objects and reset all call stacks.
You should call this any time you begin making calls on fake objects.

38 Chapter 5. API Reference

Fudge Documentation, Release 1.1.0

This is also available in fudge.patch(), fudge.test() and fudge.with_fakes()

fudge.verify()
Verify that all methods have been called as expected.

Specifically, analyze all registered fake objects and raise an AssertionError if an expected call was never made
to one or more objects.

This is also available in fudge.patch(), fudge.test() and fudge.with_fakes()

fudge.with_fakes(method)
Decorator that calls fudge.clear_calls() before method() and fudge.verify() afterwards.

class fudge.FakeDeclarationError
Exception in how this fudge.Fake was declared.

5.2 fudge.inspector

Value inspectors that can be passed to fudge.Fake.with_args() for more expressive argument matching.

As a mnemonic device, an instance of the fudge.inspector.ValueInspector is available as “arg” :

>>> import fudge
>>> from fudge.inspector import arg
>>> image = fudge.Fake("image").expects("save").with_args(arg.endswith(".jpg"))

In other words, this declares that the first argument to image.save() should end with the suffix ”.jpg”

class fudge.inspector.ValueInspector
Dispatches tests to inspect values.

any()
Match any value.

This is pretty much just a placeholder for when you want to inspect multiple arguments but don’t care
about all of them.

>>> import fudge
>>> from fudge.inspector import arg
>>> db = fudge.Fake("db")
>>> db = db.expects("transaction").with_args(
... "insert", isolation_level=arg.any())
...
>>> db.transaction("insert", isolation_level="lock")
>>> fudge.verify()

This also passes:

>>> db.transaction("insert", isolation_level="autocommit")
>>> fudge.verify()

The arg_not version will not match anything and is probably not very useful.

>>> import fudge
>>> from fudge.inspector import arg_not
>>> query = fudge.Fake('query').expects_call().with_args(
... arg_not.any()
...)
>>> query('asdf')
Traceback (most recent call last):

5.2. fudge.inspector 39

Fudge Documentation, Release 1.1.0

...
AssertionError: fake:query((NOT) arg.any()) was called unexpectedly with args ('asdf')
>>> query()
Traceback (most recent call last):
...
AssertionError: fake:query((NOT) arg.any()) was called unexpectedly with args ()

any_value()
DEPRECATED: use arg.any()

contains(part)
Ensure that a value contains some part.

This is useful for when you only care that a substring or subelement exists in a value.

>>> import fudge
>>> from fudge.inspector import arg
>>> addressbook = fudge.Fake().expects("import_").with_args(
... arg.contains("Baba Brooks"))
...
>>> addressbook.import_("Bill Brooks; Baba Brooks; Henry Brooks;")
>>> fudge.verify()

Since contains() just invokes the __in__() method, checking that a list item is present works as expected :

>>> colorpicker = fudge.Fake("colorpicker")
>>> colorpicker = colorpicker.expects("select").with_args(arg.contains("red"))
>>> colorpicker.select(["green","red","blue"])
>>> fudge.verify()

arg_not.contains matches an argument not containing some element.

>>> from fudge.inspector import arg_not
>>> colorpicker = colorpicker.expects('select').with_args(arg_not.contains('blue'))
>>> colorpicker.select('reddish')
>>> colorpicker.select(['red', 'green'])
>>> fudge.verify()

>>> colorpicker.select('blue-green')
Traceback (most recent call last):
...
AssertionError: fake:colorpicker.select(arg.contains('red'))[0] was called unexpectedly with args ('blue-green')
>>> colorpicker.select(['red', 'blue', 'green'])
Traceback (most recent call last):
...
AssertionError: fake:colorpicker.select((NOT) arg.contains('blue'))[1] was called unexpectedly with args (['red', 'blue', 'green'])

endswith(part)
Ensure that a value ends with some part.

This is useful for when values with dynamic parts that are hard to replicate.

>>> import fudge
>>> from fudge.inspector import arg
>>> tmpfile = fudge.Fake("tempfile").expects("mkname").with_args(
... arg.endswith(".tmp"))
...
>>> tmpfile.mkname("7AakkkLazUUKHKJgh908JKjlkh.tmp")
>>> fudge.verify()

The arg_not version works as expected, matching arguments that do not end with the given element.

40 Chapter 5. API Reference

Fudge Documentation, Release 1.1.0

>>> from fudge.inspector import arg_not
>>> query = fudge.Fake('query').expects_call().with_args(arg_not.endswith('Ringo'))
>>> query('John, Paul, George and Steve')
>>> fudge.verify()

has_attr(**attributes)
Ensure that an object value has at least these attributes.

This is useful for testing that an object has specific attributes.

>>> import fudge
>>> from fudge.inspector import arg
>>> db = fudge.Fake("db").expects("update").with_args(arg.has_attr(
... first_name="Bob",
... last_name="James"))
...
>>> class User:
... first_name = "Bob"
... last_name = "James"
... job = "jazz musician" # this is ignored
...
>>> db.update(User())
>>> fudge.verify()

In case of error, the other object’s __repr__ will be invoked:

>>> class User:
... first_name = "Bob"
...
... def __repr__(self):
... return repr(dict(first_name=self.first_name))
...
>>> db.update(User())
Traceback (most recent call last):
...
AssertionError: fake:db.update(arg.has_attr(first_name='Bob', last_name='James')) was called unexpectedly with args ({'first_name': 'Bob'})

When called as a method on arg_not, has_attr does the opposite, and ensures that the argument does not
have the specified attributes.

>>> from fudge.inspector import arg_not
>>> class User:
... first_name = 'Bob'
... last_name = 'Dobbs'
>>> query = fudge.Fake('query').expects_call().with_args(
... arg_not.has_attr(first_name='James')
...)
>>> query(User())
>>> fudge.verify()

isinstance(cls)
Check that a value is instance of specified class.

>>> import fudge
>>> from fudge.inspector import arg
>>> system = fudge.Fake("system")
>>> system = system.expects("set_status").with_args(arg.isinstance(str))
>>> system.set_status("active")
>>> fudge.verify()

5.2. fudge.inspector 41

Fudge Documentation, Release 1.1.0

Should return True if it’s allowed class or False if not.

>>> system.set_status(31337)
Traceback (most recent call last):
...
AssertionError: fake:system.set_status(arg.isinstance('str')) was called unexpectedly with args (31337)

passes_test(test)
Check that a value passes some test.

For custom assertions you may need to create your own callable to inspect and verify a value.

>>> def is_valid(s):
... if s in ('active','deleted'):
... return True
... else:
... return False
...
>>> import fudge
>>> from fudge.inspector import arg
>>> system = fudge.Fake("system")
>>> system = system.expects("set_status").with_args(arg.passes_test(is_valid))
>>> system.set_status("active")
>>> fudge.verify()

The callable you pass takes one argument, the value, and should return True if it’s an acceptable value or
False if not.

>>> system.set_status("sleep")
Traceback (most recent call last):
...
AssertionError: fake:system.set_status(arg.passes_test(<function is_valid at...)) was called unexpectedly with args ('sleep')

If it makes more sense to perform assertions in your test function then be sure to return True :

>>> def is_valid(s):
... assert s in ('active','deleted'), (
... "Unexpected status value: %s" % s)
... return True
...
>>> import fudge
>>> from fudge.inspector import arg
>>> system = fudge.Fake("system")
>>> system = system.expects("set_status").with_args(arg.passes_test(is_valid))
>>> system.set_status("sleep")
Traceback (most recent call last):
...
AssertionError: Unexpected status value: sleep

Using the inverted version, arg_not.passes_test, asserts that the argument does not pass the provided test.

>>> from fudge.inspector import arg_not
>>> query = fudge.Fake('query').expects_call().with_args(
... arg_not.passes_test(lambda x: x > 10)
...)
>>> query(5)
>>> fudge.verify()

startswith(part)
Ensure that a value starts with some part.

42 Chapter 5. API Reference

Fudge Documentation, Release 1.1.0

This is useful for when values with dynamic parts that are hard to replicate.

>>> import fudge
>>> from fudge.inspector import arg
>>> keychain = fudge.Fake("keychain").expects("accept_key").with_args(
... arg.startswith("_key"))
...
>>> keychain.accept_key("_key-18657yojgaodfty98618652olkj[oollk]")
>>> fudge.verify()

Using arg_not.startswith instead ensures that arguments do not start with that part.

>>> from fudge.inspector import arg_not
>>> query = fudge.Fake('query').expects_call().with_args(
... arg_not.startswith('asdf')
...)
>>> query('qwerty')
>>> fudge.verify()

class fudge.inspector.NotValueInspector
Inherits all the argument methods from ValueInspector, but inverts them to expect the opposite. See the ValueIn-
spector method docstrings for examples.

__call__(thing)
This will match any value except the argument given.

>>> import fudge
>>> from fudge.inspector import arg, arg_not
>>> query = fudge.Fake('query').expects_call().with_args(
... arg.any(),
... arg_not('foobar')
...)
>>> query([1, 2, 3], 'asdf')
>>> query('asdf', 'foobar')
Traceback (most recent call last):
...
AssertionError: fake:query(arg.any(), arg_not(foobar)) was called unexpectedly with args ('asdf', 'foobar')

5.3 fudge.patcher

Patching utilities for working with fake objects.

See Using Fudge for common scenarios.

fudge.patcher.with_patched_object(obj, attr_name, patched_value)
Decorator that patches an object before the decorated method is called and restores it afterwards.

This is a wrapper around fudge.patcher.patch_object()

Example:

>>> from fudge import with_patched_object
>>> class Session:
... state = 'clean'
...
>>> @with_patched_object(Session, "state", "dirty")
... def test():
... print Session.state
...

5.3. fudge.patcher 43

Fudge Documentation, Release 1.1.0

>>> test()
dirty
>>> print Session.state
clean

fudge.patcher.patched_context(obj, attr_name, patched_value)
A context manager to patch an object temporarily during a with statement block.

This is a wrapper around fudge.patcher.patch_object()

>>> from fudge import patched_context
>>> class Session:
... state = 'clean'
...
>>> with patched_context(Session, "state", "dirty"):
... print Session.state
...
dirty
>>> print Session.state
clean

fudge.patcher.patch_object(obj, attr_name, patched_value)
Patches an object and returns an instance of fudge.patcher.PatchHandler for later restoration.

Note that if obj is not an object but a path to a module then it will be imported.

You may want to use a more convenient wrapper with_patched_object() or patched_context()

Example:

>>> from fudge import patch_object
>>> class Session:
... state = 'clean'
...
>>> patched_session = patch_object(Session, "state", "dirty")
>>> Session.state
'dirty'
>>> patched_session.restore()
>>> Session.state
'clean'

Here is another example showing how to patch multiple objects at once:

>>> class Session:
... state = 'clean'
...
>>> class config:
... session_strategy = 'database'
...
>>> patches = [
... patch_object(config, "session_strategy", "filesystem"),
... patch_object(Session, "state", "dirty")
...]
>>> try:
... # your app under test would run here ...
... print "(while patched)"
... print "config.session_strategy=%r" % config.session_strategy
... print "Session.state=%r" % Session.state
... finally:
... for p in patches:
... p.restore()

44 Chapter 5. API Reference

http://www.python.org/dev/peps/pep-0343/

Fudge Documentation, Release 1.1.0

... print "(patches restored)"
(while patched)
config.session_strategy='filesystem'
Session.state='dirty'
(patches restored)
>>> config.session_strategy
'database'
>>> Session.state
'clean'

class fudge.patcher.PatchHandler(orig_object, attr_name)
Low level patch handler that memorizes a patch so you can restore it later.

You can use more convenient wrappers with_patched_object() and patched_context()

patch(patched_value)
Set a new value for the attribute of the object.

restore()
Restore the saved value for the attribute of the object.

5.3. fudge.patcher 45

Fudge Documentation, Release 1.1.0

46 Chapter 5. API Reference

CHAPTER 6

Contributing

Please submit bugs and patches, preferably with tests. All contributors will be acknowledged. Thanks!

47

https://github.com/fudge-py/fudge/issues

Fudge Documentation, Release 1.1.0

48 Chapter 6. Contributing

CHAPTER 7

Credits

Fudge was created by Kumar McMillan and contains contributions by Cristian Esquivias, Michael Williamson, Luis
Fagundes and Jeremy Satterfield.

49

http://farmdev.com/

Fudge Documentation, Release 1.1.0

50 Chapter 7. Credits

CHAPTER 8

Changelog

• 1.1.0

– Changed moved to github and added maintainers

– Changed remove support for python 3.1 and 3.2 in tests in lieu of 3.4

– added fudge.Fake.has_property()

– added IsInstance

– added without_args()

– Deprecation warnings are now real warnings.

• 1.0.3

– Added fudge.Fake.is_a_stub() documented here

– arg.any_value() is DEPRECATED in favor of arg.any()

– Attributes declared by fudge.Fake.has_attr() are now settable. Thanks to Mike Kent for the bug
report.

– Fixes ImportError when patching certain class methods like smtplib.SMTP.sendmail

– Fixes representation of chained fakes for class instances.

• 1.0.2

– Object patching is a lot safer in many cases and now supports getter objects and static methods. Thanks to
Michael Foord and mock._patch for ideas and code.

• 1.0.1

– Fixed ImportError when a patched path traverses object attributes within a module.

• 1.0.0

– After extensive usage and community input, the fudge interface has been greatly simplified!

– There is now a way better pattern for setting up fakes. The old way is still supported but you’ll want to
write all new code in this pattern once you see how much easier it is.

– Added fudge.patch() and fudge.test()

– Added fudge.Fake.expects_call() and fudge.Fake.is_callable()

– Changed: The tests are no longer maintained in Python 2.4 although Fudge probably still supports 2.4

• 0.9.6

51

https://github.com/fudge-py/fudge/

Fudge Documentation, Release 1.1.0

– Added support to patch builtin modules. Thanks to Luis Fagundes for the patch.

• 0.9.5

– Changed: multiple calls to fudge.Fake.expects() behave just like
fudge.Fake.next_call(). The same goes for fudge.Fake.provides(). You proba-
bly won’t need to update any old code for this change, it’s just a convenience.

– Added fudge.Fake.with_matching_args() so that expected arguments can be declared more
loosely

– Added support for Python 3

– Improved support for Jython

• 0.9.4

– Fixed bug where __init__ would always return the Fake instance of itself. Now you can return a custom
object if you want.

• 0.9.3

– Added with_args() to JavaScript Fudge.

– Fixed bug where argument values that overloaded __eq__ might cause declared expectations to fail (patch
from Michael Williamson, Issue 9)

– Fixed bug where fudge.Fake.raises() obscured fudge.Fake.with_args() (Issue 6)

– Fixed returns_fake() in JavaScript Fudge.

• 0.9.2

– Changed: values in failed comparisons are no longer shortened when too long.

– Changed: fudge.Fake.calls() no longer trumps expectations (i.e.
fudge.Fake.with_args())

– Changed: fudge.Fake.with_args() is more strict. You will now see an error when arguments
are not expected yet keyword arguments were expected and vice versa. This was technically a bug but is
listed under changes in case you need to update your code. Note that you can work with arguments more
expressively using the new fudge.inspector functions.

– Added fudge.inspector for Working with Arguments.

– Added fudge.Fake.remember_order() so that order of expected calls can be verified.

– Added fudge.Fake.raises() for simulating exceptions

– Added keyword fudge.Fake.next_call(for_method="other_call") so that arbitrary
methods can be modified (not just the last one).

– Fixed: error is raised if you declare multiple fudge.Fake.provides() for the same Fake. This also
applies to fudge.Fake.expects()

– Fixed bug where fudge.Fake.returns() did not work if you had replaced a call with
fudge.Fake.calls()

– Fixed bug in fudge.Fake.next_call() so that this now works:
Fake(callable=True).next_call().returns(...)

– Fixed: Improved Python 2.4 compatibility.

– Fixed bug where from fudge import * did not import proper objects.

• 0.9.1

52 Chapter 8. Changelog

Fudge Documentation, Release 1.1.0

– DEPRECATED fudge.start() in favor of fudge.clear_calls()

– DEPRECATED fudge.stop() in favor of fudge.verify()

– Added context manager fudge.patcher.patched_context() so the with statement can be used
for patching (contributed by Cristian Esquivias)

– Added fudge.Fake.times_called() to expect a certain call count (contributed by Cristian Esquiv-
ias)

– Added Fake(expect_call=True) to indicate an expected callable. Unlike
Fake(callable=True) the former will raise an error if not called.

• 0.9.0

– first release

53

Fudge Documentation, Release 1.1.0

54 Chapter 8. Changelog

Python Module Index

f
fudge, 31
fudge.inspector, 39
fudge.patcher, 43

55

Fudge Documentation, Release 1.1.0

56 Python Module Index

Index

Symbols
__call__() (fudge.inspector.NotValueInspector method),

25, 43

A
any() (fudge.inspector.ValueInspector method), 22, 39
any_value() (fudge.inspector.ValueInspector method), 22,

40

C
calls() (fudge.Fake method), 15, 32
clear_calls() (in module fudge), 21, 38
contains() (fudge.inspector.ValueInspector method), 22,

40

E
endswith() (fudge.inspector.ValueInspector method), 23,

40
expects() (fudge.Fake method), 15, 32
expects_call() (fudge.Fake method), 15, 32

F
Fake (class in fudge), 14, 32
FakeDeclarationError (class in fudge), 21, 39
fudge (module), 13, 31
fudge.inspector (module), 21, 39
fudge.patcher (module), 26, 43

H
has_attr() (fudge.Fake method), 15, 33
has_attr() (fudge.inspector.ValueInspector method), 23,

41
has_property() (fudge.Fake method), 15, 33

I
is_a_stub() (fudge.Fake method), 16, 33
is_callable() (fudge.Fake method), 16, 33
isinstance() (fudge.inspector.ValueInspector method), 24,

41

N
next_call() (fudge.Fake method), 16, 33
NotValueInspector (class in fudge.inspector), 25, 43

P
passes_test() (fudge.inspector.ValueInspector method),

24, 42
patch() (fudge.patcher.PatchHandler method), 27, 45
patch() (in module fudge), 13, 31
patch_object() (in module fudge.patcher), 26, 44
patched_context() (in module fudge.patcher), 26, 44
PatchHandler (class in fudge.patcher), 27, 45
provides() (fudge.Fake method), 17, 34

R
raises() (fudge.Fake method), 17, 34
remember_order() (fudge.Fake method), 17, 35
restore() (fudge.patcher.PatchHandler method), 27, 45
returns() (fudge.Fake method), 18, 35
returns_fake() (fudge.Fake method), 18, 35

S
startswith() (fudge.inspector.ValueInspector method), 25,

42

T
test() (in module fudge), 14, 31
times_called() (fudge.Fake method), 18, 36

V
ValueInspector (class in fudge.inspector), 22, 39
verify() (in module fudge), 21, 39

W
with_arg_count() (fudge.Fake method), 19, 36
with_args() (fudge.Fake method), 19, 36
with_fakes() (in module fudge), 21, 39
with_kwarg_count() (fudge.Fake method), 19, 37
with_matching_args() (fudge.Fake method), 20, 37
with_patched_object() (in module fudge.patcher), 26, 43
without_args() (fudge.Fake method), 20, 37

57

	Download / Install
	Installing for Python 3
	Source
	Contents
	Using Fudge
	Fudge For JavaScript
	Why Another Mock Framework?
	Migrating from Fudge 0.9 to 1.0

	API Reference
	fudge
	fudge.inspector
	fudge.patcher

	Contributing
	Credits
	Changelog
	Python Module Index

